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BIFURCATION OF A RUNNING CRACK IN ANTIPLANE STRAIN
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Abstract-An elastodynamic explanation of running crack bifurcation is explored. The geometry is a
semi·infinite body in a state of antiplane strain, which contains a two·dimensional edge crack. It is assumed
that a quasi-static increase of the external loads gives rise to rapid crack propagation at time t = 0, with an
arbitrary and time-varying speed, but in the plane of the crack. A short time later the crack is assumed to
bifurcate at angles -K'rr and +K1T, and with velocities v. The elastodynamic intensity factors are computed, and
the balance of rates of energies is employed to discuss the conditions for bifurcation.

1. FORMULATION OF THE PROBLEM
Once the propagation of a crack has started, the primary crack often bifurcates into two or more
branches, each of which may propagate over a short distance, and then again split into two or
more new branches. Crack bifurcation occurs in a variety of materials, and under different
external conditions. The phenomenon is, however, particularly frequent for essentially brittle
fracture, when the speed of crack propagation becomes relatively large.

It requires sophisticated high-speed photographical equipment to take a sequence of
photographs showing the evolution of the pattern of bifurcating cracks. The techniques which
are available for this purpose have been developed and described by Schardin [1] and
Kerkhof[2, p. 108]. In both[l] and [2] a number of shadow photographs of bifurcating cracks are
shown, and numerical information on speeds of crack propagation is presented. A paper by
Kalthof[3] dealing with bifurcation of a primary edge crack in a stretched glass plate, includes a
sequence of shadow photographs at a framing rate of 4 jLs, which is particularly illustrative of the
first bifurcation of the primary crack.

The amount of analytical work dealing with crack branching under an arbitrary angle with the
primary crack is rather limited. For antiplane strain, elastostatic analyses were presented by
Sih[4] and Smith [5]. The elastostatic in-plane problem of a single branch emanating from a
primary crack has recently been treated by Hussain, Pu and Underwood [6], and Palaniswamy
and Knauss [7]. In addition there have been proposals to determine the conditions for crack
branching from the stress field around the unbranched crack. Frequently discussed among these
is a recent criterion due to Sih [8], which is based on the distribution of strain energy around the
crack tip of the primary crack.

The analytical works cited above are elastostatic in nature. Experimental observations of the
magnitude of the speed of crack propagation at branching, see [1, 2], suggest, however, that
elastodynamic effects play a significant role. Another indication of the importance of
elastodynamic effects is found in the observation that for a crack propagating in its own plane,
under the influence of uniaxial tension, the maximum values of elastodynamic stresses move out
of the plane of crack propagation when the crack propagation velocity exceeds a certain critical
value, see [9-12].

Bifurcation of a running crack is an instability phenomenon. A necessary condition for
bifurcation can be determined by comparing states prior to branching and after branching has
taken place. The comparison requires expressions for the elastodynamic fields near the tips of the
branches. For symmetric branching in antiplane strain the near-tip fields are analyzed in this
paper by extending the analytical work of[13]. The necessary condition for bifurcation of a
running crack is subsequently established on the basis of the balance of rates of energies.

The particular problem considered here concerns the two-dimensional geometry of an edge
~rack of depth a in a semi-infinite elastic solid. In a cartesian coordinate system (x, y, z) the
position of the crack tip is defined by x = a, and the z ·axis is parallel to the edges of the crack, as
shown in Fig. 1. The solid is subjected to a distribution of equal and opposite concentrated forces
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Fig.!. Tearing of an edge crack.

in the z-direction, applied at x =0 and y = ± E, where E is very small. These antiplane shear
forces of magnitude Z = S(t) force units per unit length give rise to deformations in antiplane
strain. It is assumed that the fields of stress and deformation generated by S(t) are elastostatic in
nature. The stress component 'Tyz is of the general form

'Tyz = g(x, y) S(t). (1.1)

Let us now suppose that at time t = 0 a rapid Mode III tearing process starts, and that the
crack begins to propagate, initially in its own plane, so that the position of the crack tip is defined
by x = a +X(t). The process of crack propagation implies that tractions 'Tyz = g(x, 0) S(t) are
removed from a < x < a +X(t), as follows from eqn (1.1). It is assumed that the fields generated
by the propagation of the crack are elastodynamic in nature.

In a two-dimensional geometry antiplane displacements w(x, y, t) are governed by
V2w = (l/c 2)8

2
wI8t 2

, where V2 is the Laplacian, and c is the velocity of transverse waves,
c = (#-LIp )112. Here IJ- and p are the shear modulus and the mass density, respectively. We
consider the case that the speed of crack propagation is smaller than the velocity of transverse
waves, i.e.

dX I 112(it < c, C = (IJ- p) . (1.2)

The propagation of a crack in its own plane has been analyzed in detail, see e.g. [14), at least
for small times. Some pertinent results will be briefly reviewed in Section 2. In this paper we
wish, however, to consider the case that subsequent to propagation in its own plane in the time
interval 0 < t < tbl> the crack bifurcates symmetrically under angles ±K7T from the points defined
by x = a +X(tbf ). The elasto-dynamic fields generated by the removal of tractions from the crack
branches and the subsequent application of the balance of rates of energies are the principal
topics of analysis of the present paper.

2. RAPID CRACK PROPAGATION IN THE PLANE OF THE CRACK

It is well-known that the stress components and the particle velocity are singular at a moving
crack tip. In terms of a system of cylindrical coordinates (R, cp, z) which is attached to the moving
crack tip, see Fig. 2, the singular parts of the shear stress 'T",z and the particle velocity ware of the
forms

(2.la, b)

The functions T",z and W, which generally depend on time, the angle cp, and the geometrical and
material parameters, are termed the stress-intensity function and the velocity-intensity function,
respectively.

For antiplane strain, the elastodynamic fields generated in the plane of the crack by the
removal of tractions of the type given by eqn (1.1) from the newly formed fracture surface were
investigated in some detail in [14, p. 34). The following result was obtained
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and
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Fig. 2. Rapid propagation and bifurcation in antiplane strain of an edge crack.
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(2.2)

(2.3)

(2.4)

(2.5)

These expressions are valid for 05,; t 5,; 2a Ie.
For essentially brittle fracture the balance of rates of energies provides a necessary condition

for crack propagation. The balance of rates of energies states

dX
F = 21'Fd( (2.6)

Where F is the energy flux into the crack tip, and 1'F is the specific surface energy, which is
assumed to be constant-valued. It follows from the results of Achenbach [14] and Freund [15] that
the flux of energy into a propagating crack tip in Mode III fracture can be expressed in the form

F = 1fT",z(1f, t) W(O, t). (2.7)
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Substituting eqns (2.2) and (2.5) into (2.7) and (2.6), we obtain

(
1- a)112 27T'YFJ1;
1+a a = [1(t)]2 a. (2.8)

This balance of rates of energies yields not only the critical magnitude of the externally applied
tractions, but also a nonlinear ordinary differential equation for X(t). If the left and right-hand
sides of eqn (2.8) are plotted vs a, the term (27T'YFJ1;fI2(tHa is a straight line through the origin,
whose slope decreases as 1(t) increases. The necessary condition for fracture is satisfied when
the slope is smaller than the slope of (l - a )1/2 a f(l + a)1/2 at a = 0, i.e. when

(2.9)

Thus, eqn (2.9) provides a necessary condition for initiation of fracture. For 1(t) > (27T'YFJ1; )11
2 the

dimensionless speed of crack propagation a can be computed from eqn (2.8).
For the problem described in Section 1, and illustrated in Fig. 1, the stress in the plane of the

crack prior to fracture can be computed. Referring to eqn (1.1), the function g(x, 0) in the
immediate vicinity of the crack tip is of the form

1 (2 )112 ( 1 )112g(x, 0) = - - -- +O[(x - a )112].
7T a x-a

Substituting eqn (2.10) into the integral 1(t), eqn (2.4), we obtain

(
2 )1/2

I = a S(t) + higher order terms.

(2.10)

(2.11)

The critical magnitude of the external load S(t) immediately follows from (2.9) and (2.11) as

(2.12)

At the very beginning of the fracture process, when X(t) ~ a, the higher order terms in eqn (2.11)
can be neglected. The dimensionless speed of crack propagation can then be computed from eqns
(2.8) and (2.11) as

IdX [S(t)fSc.t-l
a =cdT= [S(t)fSc.t+f (2.13)

There will be an instantaneous speed of crack propagation if S(t) exceeds Se. at the instant that
fracture starts.

It is of interest to compute the magnitude of dXfdt for a few values of S(t)/Se•. We find
S(t)fScr = 1: dX/dt =0; S(t)/Se. = H: dX/dt =0'188c; S(t)/SCT = 1·2: dX/dt =0·35c. Evi
dently the speed of crack propagation becomes already comparable to the speed of transverse
waves when the external loads are increased by only about ten percent.

In the foregoing we have obtained the singular part of the stress in the plane of the
propagating crack, Le. T",. (7T, t). The angular variation of the stress singularity near the
propagating crack tip can be analyzed in a very simple manner by a method which was employed
in static elasticity by Williams[l6]. For elastodynamic problems this method was explored in
considerable detail in [12], where it is shown that in the immediate vicinity of the moving crack tip
the stress 1'",. is of the form

1T ( 2)112 if.. ( R-112
1'",z =2: (t) I-a 'l'. a,rp)

where a is defined by eqn (2.3). For 0 $ rp $ 7T, we have

(2.14)

(2.15)
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_[0 -ex 2 sin2 cp )1/2 +COS cp] 112
<1>1 - 2 • 21- ex sm cp

_[0- ex 2 sin2 cp )1/2 - COS cp]1/2
<1>2 - 1 2' 2 •- ex sm cp
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(2.16)

(2.17)

For various values of ex, the function <l>T(ex, cp) is plotted vs cp in Fig. 5 of [13]. The plot shows that
the maximum value of <l>T moves out of the plane of crack propagation, cp = 7T, as ex reaches a
value slightly smaller than 0·6. Comparing eqns (2.14), (2.1) and (2.2) it is concluded that the
intensity function T",z is

1 1 ( 1/2 m ( )T",z =;- y2 1- ex) I(t)'l'T ex, cp , (2.18)

where I(t) is defined by eqn (2.4).
The bifurcation of a running crack may be thought of as consisting of arrest of propagation in

the plane of the crack, immediately followed by initiation of the two branches. When the
propagation in the plane of the crack stops at t = tb{, a cylindrical wave is generated. The position
of the wavefront of this wave at time t > tb{ is indicated in Fig. 2. By setting dX/dt = 0, the
singularity at x = a +X(tb{) compatible with crack arrest follows from eqn (2.18) as

where

T",z = AH(t - tb{) sin (cp /2)R -1/2

1
A =- I(tb{).

7T

(2.19)

(2.20)

In the immediately following process of symmetric bifurcation at velocities v, where v /c < 1, the
stress given by eqn (2.19) is removed from the branches which are defined by R < vt, cp = 7T ± K7T.

A particular problem of crack bifurcation is examined in the next section, and we will return
to the discussion of bifurcation of a running crack in Section 4.

3. ANALYSIS OF INSTANTANEOUS CRACK BIFURCATION
In a stationary system of polar coordinates, rand 0, two-dimensional antiplane wave motions

are governed by

(3.1)

where w(r, 0, t) is the out-of-plane displacement, and c is the velocity of transverse waves. The
relevant shear stresses are

(3.2a, b)

As a preliminary to the analysis of branching of a running crack we analyze in this section the
elastodynamic fields which are generated when two branches emanate symmetrically from the tip
of a stationary semi-infinite crack, upon the sudden application of equal and opposite uniform
antiplane shear tractions to the two semi-infinite surfaces of the crack. The shear tractions
produce two plane waves, and a diffracted cylindrical wave with center at the original crack tip. It
is assumed that the semi-infinite crack bifurcates at the instant that the shear tractions are
applied, and that bifurcation takes place at angles ±K7T, and with constant velocities v, where
v/c < 1. At time t > 0, the crack tips are located at points C and D, which are defined by r = vt,
0= -K7T and r = vt, 0 = K7T, respectively. The pattern of wavefronts and the positions of the
crack tips are shown in Fig. 3. Note that L, M and N all denote the original crack tip, but at
different sides of the fracture surface.
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Fig. 3. Pattern of wave fronts and positions of crack tips for instantaneous bifurcation of a semi-infinite
crack.

The problem described above is governed by eqn (3.1). The conditions on the physical
boundaries are

8 =±7T, r>O: 7'8,=7'oH(t)

8 =± WTr, 0 < r < vt: 7'0' =0

(3.3)

(3.4)

where 7'0 is the magnitude of the uniform distribution of shear tractions. The shear tractions at
8 = ±7T generate plane waves, with constant particle velocities of magnitudes ±c7'olIJ-. Along the
segments BE and FO, see Fig. 3, the particle velocities then are

7T"2< 8:5 7T, r = ct: w= c7'o/lJ-

- 7T :5 8 :5 - ¥, r = et: w= -eTol IJ-.

The material is undisturbed ahead of the segment BO, and thus

-!!<8<!! r=ct: w=0.
2 2'

(3.5)

(3.6)

(3.7)

Equations (3.3)-(3.7) can be considered as boundary conditions on w(r, 8, t) for the region of
the cylindrical wave. It is evident from these conditions that the displacement field is
antisymmetric with respect to 8 = 0, which implies that w, and thus wvanishes as 8 = 0:

8 =0, 0 < r < et: w=o. (3.8)

It then suffices to consider only the region 0:5 (J :5 7T, 0 < r :5 ct.
Let us consider the particle velocity as the dependent variable. For t > 0 it then follows from

eqns (3.3) and (3.4) that

8= 7T,

8= K7T,

r >0: aw =0
a8

oW
0< r < vt: a8 = O.

(3.9)

(3.10)

Equations (3.5) and (3.7)-(3.10) are the conditions on the particle velocity W, on the boundaries of
the region 0 < r < ct, 0:5 8 :5 7T. These conditions suggest that the particle velocity w is
self-similar. The property of self-similarity implies that wdepends on rlt and 8, rather than on 8
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and rand t separately. As discussed in[17, p. 154] and [13] it is then convenient to introduce the
new variable s = rlt, whereupon the equation for w(s, I)) follows from eqn (3.1) as

(3.11)

For s < c, Chaplygin's transformation f3 = cosh-1(cIs), reduces eqn (3.11) to Laplace's
equation

(3.12a, b)

The real transformation given by eqn (3.12b) maps the interior of the domain 0 :;;; I) :;;; 71', s < c into
a semi-infinite strip in the I) - f3 plane containing a slit. The domain in the I) - f3 plane is shown in
Fig. 4, where the boundary conditions corresponding to eqns (3.5)-(3.10) are also indicated.

In the I) - f3 plane the harmonic function w can be taken as the real part of an analytic
function G('I)

w= Re G('I), 'I = f3 + iIJ, (3.13a,b)

where G('I) can formally be obtained by conformal mapping techniques. The domain in the
'I-plane can be related to the upper half of the (-plane by means of a Schwarz-Christoffel
transformation

(3.14, b)

An appropriate transformation is

(3.15)

Here C1 and Cz are complex constants. The (-plane is shown in Fig. 5. Eqn (3.15) implies that the
points A and E are mapped at ( = -1 and ( = +1, respectively, while the point D is mapped into
the origin ( = O.

Equation (3.15) may be integrated to yield

(3.16)

woo

The mapping of the point E gives

8

bw =0
E b8."r=------L...-:.....:.....------N

f __ -Dc:d,==:!=",=P==l:6==;:=:=~===0==:
wooL...-------r--------M ___

{3

Fig. 4. Domain in the IJ - f3 plane.
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Fig. 5. Mapping on the ( =g+i1) plane.

C2 = i7T.

Considering the change in imaginary parts at M and N we obtain

K= -CI~M/(~M + ~N)(1- ~M2)1/2

1- K = -ClgN!(gM +gN)(1- gN2)1I2

(3.17)

(3.18)

(3.19)

respectively. Eliminating C1 from eqns (3.18) and (3.19), and substituting the results in eqn (3.16)
we find

w({) = K{ln [(1- ~M2)1/2(1-C)I/2 +(gM + 1] -In (~+ ~M)}

+(1- K) {In [(1- gN2t\1 - C)I/2 ~gN + 1] -In U - ~N)} + i7T. (3.20)

A comparison of the coordinates of point D in the y- and;-planes, results in the relation

[c (c2 )1/2]
In ; + v 2 - 1 + iK7T = W(0).

The mapping of the point B yields

(3.21)

(3.22)

For given values of K and vIc, ~M and ~N can now be computed from eqns (3.18), (3.19) and
(3.21), while ~B can subsequently be computed from eqn (3.22). These computations must be
carried out on a digital computer. The values for limiting cases can, however, be obtained
analytically, as

K=O: gM=O; gN=vlc; gB=clv

K = O'5: gM = vIe; gN = v!c ; gB ~ 00

~~1: ~M=(I~Kr-K~; gN=(I~J-K~;

(3.23)

(3.24)

(3.25)

This completes the computation of the pertinent points in the ; -plane.
The boundary conditions shown in Fig. 4 transform into the following conditions on the real

axis in the ; -plane.

Denoting

-oo<g:::;-gM: W=0

-gM<g<l: iJw!a7f=o

1< ~ < ~B : W = cro! fJ,

gB :::; ~ < 00: w= O.

tV =ReF(O,

(3.26)

(3.27)

(3.28)

(3.29)

(3.30)
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the analytic function F(O can be obtained analogously to the solution of similar problems in [13]
and [18]. From eqn (3.27) it is noted that P(n. where the prime denotes differentiation with
respect to the argument, is real in the interval -~M < ~ < 1, while F'(O is imaginary along the
remaining portion of the real axis. The discontinuity in wat ~ = ~B suggests a simple pole at that
point. The following expression satisfies these conditions:

(3.31)

where A is a real-valued constant. Integrating with respect to ( and applying the condition at
(= ~B we find

where

and

A == CTo/(.t7T,

F(O == [«( + ~M)1I2(~B - 1)1/2 + «( - 1)112(~B + ~M )112]2

T== [(~B _1)112 +(~B +~M )112t

(3.32)

(3.33)

(3.34)

(3.35)

It can be verified that was given by eqn (3.32) does indeed satisfy the boundary conditions
(2.26}-(3.29).

To obtain an explicit expression for was a function of r/t and fJ, (has to be solved in terms of
'Y from the mapping function 'Y w(O given by eqn (3.20). This appears to be rather difficult.
Without inverting the mapping function it is, however, possible to derive explicit expressions for
the singular parts of the stresses and the particle velocity in the vicinity of the moving crack tip.

In the fJ - f3 plane shown in Fig. 4, we consider a cylindrical coordinate system z, P, l/I
centered at D. In the strip w is governed by Laplace's equation, and ow/ofJ vanishes on the
surfaces of the slit. This implies that ow/op and O/p)ow/ol/l, or Tv: and ToP:, show square root
singularities at the tip of the slit. The forms of Tv: and ToP: follow, for example, from the results
of[4] as

(3.36)

It is not difficult to show that the intensity factor K can be expressed as

(3.37)

For details we refer to [4] and[l3]. In general the function dF/d( is continuous at (= ~D, and
dw Id( vanishes as ( approaches ~D' In that case we use the expansions

w(O- W(~D) ==! CW"(~D)+' .•
2

W'(~D) == (W"(~D) +.. '.

In the limit eqn (3.37) then yields

For the problem at hand we find by using eqns (3.15) and (3.31)

(3.38)

(3.39)

(3.40)

(3.41)
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The factor K is plotted in Fig. 6.
The intensity factor K refers to fields in the {3 - (J plane. We still have to find the shear

stresses in the vicinity of the crack tip in the physical plane, i.e. in terms of the polar coordinates
Rand cp shown in Fig. 2. After a number of manipulations, which are described in some detail
in[13] we obtain

(3.42)

where

(3.43)

and <PT is defined by eqn (2.15). It is, of course, not surprising that the function <P T appears in this
result, since it was shown in [12] that the angular variation of the near tip stress field depends only
on the instantaneous value of the speed of crack propagation.

In an analogous manner we can find

(3.44)

where

(3.45)

In the range 0:5 cp:5 7T the function <PI (vIc, cp) is given by eqn (2.16).
The limitcase K ~ 0 requires some special attention. By employing the results stated in eqn

(3.23) in the expression for K given by eqn (3.41) we find in the limit K ~ 0

0.1

0.08

0.06

0.04

0.02

0.1 0.2 0.3 0.4 0.5

0.9

0.8

0.7
0.4

0.6 0.3

17.:1 0.5 0.2

K

Fig. 6. Factor K vs K for various values of vIe.
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K:= _ CTo(l- vlcfl4(.£)112
7T(l+vlc)ti4 C •
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(3.46)

Equation (3.46) may be compared with the corresponding K for the case that the crack does not
bifurcate, but propagates in its own plane. By examining the geometry of the mapping it is not
difficult to see that the point M then coincides with the point D, while the positions of Nand B
are given by eqn (3.23). The corresponding expressions for F'(O and (V'«() follow from eqns
(3.31) and (3.15) as

F'(Y) = CTo __i_ (c Iv _1)II\C Iv )1/2
b /L7T (- c/v «( _1)li2t/2

(V'(O:= «( _vlc~ll- C)lii,

where C1 follows from eqns (3.19) as

The factor K now follows directly from eqn (3.37) as

K = _ CTo (1- vIc )1/4 (.£)1/2Y2
7T (1+vlc)J/4 C •

(3.47)

(3.48)

(3.49)

(3.50)

The difference between eqns (3.46) and (3.50) is in the multiplying factor Y2. Thus, when the
crack bifurcates with infinitesimally small angle, the intensity factors drop considerably. For the
quasistatic case it was found by Smith [Ref. 5, eqns (28) and (31)] that for small bifurcation angles
the critical stress is y2 times as large as for propagation along a single segment in the plane of the
crack, which is consistent with the results found here. For the present analysis the difference
between eqns (3.46) and (3.50) does, however, not imply that bifurcation is unlikely to occur, as
we shall see in the next section.

For various values of vIc the factor K given by eqn (3.41) is plotted in Fig. 6. It is noted that
the maximum of K shifts to a higher value of K as vIc increases.

4. BIFURCATION OF A RUNNING CRACK

The results obtained in Sections 2 and 3 can now be used to analyze the conditions for
bifurcation of a running crack. It was pointed out in Section 2 that for a running crack which
bifurcates at time t = tbi> the stresses which must be removed from the crack branches are given by
eqn (2.19), where R < vt, and <p 7T ± K7T.

Let us suppose that upon bifurcation of the running crack the stress distribution near the
branch tip D is of the general form

(4.1)

where

(4.2)

and iP and R are defined in Fig. 2. In the previous section we have found that the near tip stress
field for instantaneous bifurcation upon the application of equal and opposite uniform antiplane
shear tractions to the two semi-infinite surfaces of a stationary crack, is defined by eqn (3.42). If
for that case the crack does not bifurcate, nor propagate in its own plane, the near tip stress field
is

(4.3)

where
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(4.4)

This result follows from eqn (9.96) of [17], by setting a = 7T /2. Clearly, the result (3.42) can also be
regarded as being a consequence of removing stresses of the form (4.3) from the crack branches.
Thus, we now have a known stress (3.42) due to the removal of a known distribution of surfaction
tractions (4.3), and an unknown stress (4.1) due to the removal of the known distribution (2.19).
Apart from constants the difference between eqn (2.19) and (4.3) is, however, only in the time
dependence; eqn (2.19) contains a step time dependence, while in eqn (4.3) the dependence on
time is as tin. These results then suggest that at least for very small times, k ~(t) and kT (t) are
related by superposition considerations as

(4.5)

This equation can easily be solved for k~ as

In a similar manner we can obtain

1 (VC)1I2 ( V2 )-114 K
kt = - (2 )112 1-2 - S(tb{).

1J. a c C'To

The corresponding flux of energy into a crack tip is

F* =!!..£ (E)2 [SUb!)f.
1J. aCTo

(4.6)

(4.7)

(4.8)

The conditions are right for crack bifurcation at time t = tb! with velocity v, if the balance of rates
of energies (2.6) can be satisfied, which implies

(4.9)

The left hand side of eqn (4.9) can immediately be obtained from the results plotted in Fig. 6.
Since eqn (4.9) contains two unknowns, namely v and K, an additional condition is required. Such
an additional condition is that only a point where F* is a maximum with respect to K defines a
case of stable crack propagation relative to variations of K. Thus in Fig. 7 the maxima of
(7TK! c'T'ol with respect to K have been replotted versus v /c.

In Fig. 7, we have also plotted the curve 2(1- af'2a/O +a)I/2 for propagation in the plane
of the crack, and the line 27TaYF,ua!£S(ot. The slope of the line decreases as Set) increases.
When set) = SeT = (7TI-I/ypa)1/2 the necessary condition for fracture is met. The load Set) may
exceed Ser before fracture in the plane of the crack may actually start. If that is the case there is
an instantaneous speed of crack propagation, and subsequent values of dX/dt as Set) increases
can be determined as the intersection of the line and the curve, as previously discussed in Section
2. From Fig. 7 we note, however, that as Set) increases, the line 27TaYFJ,ta![S(t)]2 will eventually
touch the curve for (7TK !CTo);'ax which is also plotted in Fig. 7. When that takes place eqn (4.9) is
satisfied, and the necessary condition for crack bifurcation is satisfied. Since both the curves
2(1 - a )1/2a /0 + a )1/2 and (7TK !CTo);'ax are independent of the load, it is evident that the pertinent
parameter governing initiation of crack bifurcation is the speed dX!dt of the crack in its own
plane. The speed follows from the intersection of 2(1- a)I/2a /(l + a)112 with the straight line
through the origin which touches the curve (7TK!CTo);'ax. We find

(
ld?)-- ~0'375,
edt bifurcation

(4.10)
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Fig. 7. Terms appearing in the balances of rates of energies for propagation in the plane of the crack and for
symmetric bifurcation.

The insert in Fig. 7 shows a somewhat enlarged view of the region for small vIc. The speed of
bifurcation is found as

(.!:) - 0·02.
C bifurcation

(4.11)

The angle of bifurcation is

K7T - 0·2271'. (4.12)

Equation (4.10) indicates of course only the velocity of in-plane crack propagation at which the
necessary condition for bifurcation is first met. Equations (4.11) and (4.12) indicate the
corresponding speed and angle of bifurcation. Note that the speed of bifurcation is much smaller
than the preceding in-plane crack propagation velocity. Once bifurcation has started the curve for
propagation in the plane of the crack becomes, however, again operative, and the speed of crack
propagation can increase rapidly until the conditions is met for another bifurcation, as the load is
increased.

5. CONCLUDING REMARKS
Solutions of antiplane (Mode-III) problems frequently suggest the proper steps for the attack

on inplane problems. There are, however, some principal differences in the basic mechanisms of
crack bifurcation for the antiplane and inplane cases, and these should be kept in mind. Branches
of a primary crack under pure mode-I loading generally are subjected to both Mode-I and
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Mode-II loading conditions. Mixed loading conditions do not occur for crack bifurcation in
antiplane strain.

The experimental information available in the literature is for the inplane case. In addition to
the dynamic studies presented in [1-3], experimental results were also reported in [19-22]. There
are several differences between the experimental results for the inplane case and the analytical
results for the antiplane case obtained in this paper. In eqn (4.12) the angle of bifurcation is stated
as approximately 40°. Experimentally the following angles were found for the inplane case:
Congleton[l9J: -20°; Clark, Irwin [20J: -17'; Kalthof[3]: -15°; Kobayashi et al. [21]: -13°. In the
present paper the post-bifurcation speed was computed as vIe"" 0,02, see eqn (4.11). Doll [22J
measured the speed of the bifurcating branches as approximately 90% of the speed of the primary
crack tip just prior to bifurcation. Kobayashi et al. [21] found slightly smaller values. In the
present paper the speed at which bifurcation of the primary crack tip occurs was obtained as
0·375 times the speed of transverse waves, see eqn (4.10). For the inplane case Kerkhof[2]
measured a maximum crack velocity of approximately one third of the speed of longitudinal
waves.

The differences between the analytical results for the antiplane case presented in this paper
and the experimental results for the inplane case cited above can primarily be ascribed to
differences in the basic fracture mechanisms. Another reason for the differences could be that in
the analysis 'YF (the apparent surface energy) was assumed independent of the crack tip velocity.
It has, however, been reported that experiments on steel under Mode-I loading show that for a
rapidly propagating crack tip the apparent surface energy may be more than a factor of ten higher
than for slowly propagating crack tips. In principle it would not be difficult to extend the analysis
of this paper to the case that 'YF depends on the crack propagation velocity, but this would require
an explicit expression for 'YF in terms of the crack propagation velocity. Such an expression is
presently not available.
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